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Abstract

Contemporary deep learning models are very successful in recognizing predetermined cat-
egories, but often struggle when confronted with novel ones, constraining their utility in
the real world. Identifying this research gap, On-the-fly Category Discovery aims to enable
machine learning systems trained on closed labeled datasets to promptly discern between
novel and familiar categories of the test-images encountered in an online manner (one image
at a time), along with clustering the different new classes as and when they are encountered.
To address this challenging task, we propose SynC, a pragmatic yet robust framework that
capitalizes on the presence of category names within the labeled datasets and the power-
ful knowledge-base of Large Language Models to obtain unique feature representations for
each class. It also dynamically updates the classifiers of both the seen and novel classes for
improved class discriminability. An extended variant, SynC-AL incorporates a lightweight
active learning module to mitigate errors during inference, for long-term model deployment.
Extensive evaluation show that SynC and SynC-AL achieve state-of-the-art performance
across a spectrum of classification datasets.

1 Introduction

Deep learning models have achieved remarkable success in visual recognition tasks, often surpassing human
performance. However, these models typically rely on closed category sets and extensive annotated datasets,
limiting their ability to recognize novel categories. This presents a challenge in real-world, where encountering
new categories is inevitable. The abundance of unlabeled data increases the need for models that can
generalize to new categories and identify similarities without extensive annotation. Generalized Category
Discovery (GCD) (S. Vaze, 2022) aims to classify samples in a query set containing both known and unknown
categories, based on a labeled support set of known categories. The challenge lies in accurately identifying
new, unseen classes that share semantic similarities with the known ones. Still, the GCD task relies on (i)
access to the data from test categories during training, which limits their ability to handle truly novel classes,
and (ii) batch-wise processing during inference, which is not desirable for real-time applications. To address
the limitations of GCD, (Du et al., 2023) proposed a more challenging and realistic task, namely On-the-
fly Category Discovery (OCD) (Figure 1). OCD utilises a closed-labeled set for training without requiring
access to novel class data. Additionally, it performs inference for each query sample in an online manner, and
obviates the requirement of collecting batches of test data. This shift from the standard paradigm creates a
agile and adaptable classification framework, better suited for real-world applications.

Here, we propose a novel framework termed SynC (Syncing image features and Language-assisted represen-
tations with Classifier Update), which is designed to overcome these challenges. Since the model encounters
images from novel classes during inference, it is important that the model learns to map input training
images to a semantically meaningful latent feature space, which is unique for each class without any apriori
knowledge about these classes. Towards this goal, as a pre-processing step, we utilize category names from
the labeled dataset to generate descriptions using the powerful knowledge-base of Large Language Models
(LLMs). By providing prompts specific to each category, we obtain comprehensive textual representations
that encode the semantic essence of each category. We use two tailored supervised contrastive loss functions
to align the image embeddings with the semantic information embedded within their class-specific textual
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Figure 1: Different stages of OCD: Left: Training, Middle: Testing and Right: Testing with Active Learning.
We propose SynC and SynC-Al for handling both the testing scenarios.

representations and class-wise prototypes. During inference, SynC categorizes the samples sequentially into
previously encountered or novel classes by utilizing a class-wise adaptive threshold. By utilizing the nearest
mean class representatives as the classifiers, learned associations between visual and textual modalities are
leveraged, thereby enhancing classification accuracy. During test-time, SynC utilizes the stored statistics
of the classes encountered so far to periodically update all the classifiers simultaneously, thereby further
improving their discriminability.

Furthermore, we propose an extended variant, SynC-AL, which incorporates lightweight active learning, al-
lowing for effective human intervention to correct errors that could otherwise propagate through the system.
Even with minimal human involvement, SynC-AL can help to further boost the performance of the frame-
work. Experimental results demonstrate that the proposed framework achieves state-of-the-art performance
across three widely used coarse-grained and four fine-grained classification datasets. The contributions of
the work are as follows:
1) We propose a novel SynC framework which effectively utilizes language supervision to address the chal-
lenging OCD task.We show that language supervision can be successfully leveraged for the OCD task, even
when the class names of the novel categories are unknown.
2) We propose a test-time classifier update during inference to allow knowledge transfer between old and
novel classes for improved discriminability.
3) To the best of our knowledge, this is the first work to propose a strong baseline (SynC-AL) for On-the-
fly-Active Category Discovery (OACD) setting.
4) We establish state-of-the-art results for this challenging task on several benchmarks.

2 Related Work

Here, we provide pointers to a few related work on the different concepts used in this work.
Generalized Category Discovery (GCD): GCD (S. Vaze, 2022) involves classifying unlabeled data
containing instances from both previously seen classes and entirely novel classes. Here, both unsuper-
vised and supervised contrastive losses (C. Ting, 2020) are employed to fine-tune a Vision Transformer
(ViT) (A. Kolesnikov & Zhai, 2021), that was pre-trained using DINO (C. Mathilde, 2021). This enhances
the similarity between feature representations of various views of the same image and between different
images of the same class. PromptCAL (Z. Sheng, 2023) introduced prompts to provide valuable semantic
supervision signal for the GCD task. In P. Nan (2023), conceptual contrastive learning is utilized by the
authors, which considers the relationship between instances and significantly improves clustering accuracy.
SPTNet (W. Hongjun, 2024) proposes a two-stage adaptation approach that optimizes both model and data
parameters by accounting for the spatial properties of image data. Tingzhang et al. in L. Tingzhang (2024)
propose a dual-context approach that enhances feature learning by integrating instance-level and cluster-level

2



Under review as submission to TMLR

contextual information, thereby improving the identification and classification of categories in unlabeled
datasets. Keon-Hee et al. in P. Keon-Hee (2024) introduce a novel problem setting "Online Continuous
Generalized Category Discovery". They also propose a framework that enables models to continuously
learn and adapt to new categories in streaming data using energy-guided discovery, variance-based feature
augmentation, and contrastive loss to mitigate forgetting and enhance category separation. On-the-fly
Category Discovery addressed in this work emphasizes real-time adaptation with instantaneous category
discovery, requiring each sample to be inferred independently, whereas Online Continuous Generalized Cate-
gory Discovery allows multiple test-time samples and often incorporates memory buffers or replay strategies.

On-the-fly Category Discovery: The authors of (Du et al., 2023) introduced the practical OCD
task to enable trained models to instantaneously recognize and classify novel categories, akin to human
cognition. They propose a hash coding-based recognition model and a Sign-Magnitude dIsentangLEment
(SMILE) architecture to mitigate intra-category variance, facilitating inductive learning and streaming
inference for rapid adaptation to new information. Haiyang et al in Z. Haiyang (2024) introduce a Proto-
typical Hash Encoding (PHE) framework that enhances online discovery of new categories in streaming
data by generating multiple prototypes per category to capture intra-category diversity and employing
discriminative category encoding to improve hash code discrimination, effectively addressing sensitivity
issues in fine-grained class discovery. Both the works relies of hash codes, hence they faces challenges related
to the predefined length of hash codes for category descriptors, which is addressed in our work.

Self-supervision: SimCLR (C. Ting, 2020) proposes a framework for contrastive learning of visual
representations, which learns effective features from unlabeled data by maximizing agreement between
augmented views of the same image while minimizing agreement between views of different images.
Supervised contrastive learning (K. Prannay, 2020) extends these methods by incorporating labeled data,
where positive pairs consist of samples from the same class and negative pairs are from different classes.
Our work leverages both supervised learning and contrastive learning to learn effective representations.

Zero-shot learning: CHiLS(Novack et al., 2023) improves CLIPs zero-shot accuracy on coarse
classes by expanding each superclass into a set of finer hierarchical subclasses, sourced from taxonomies or
generated via GPT-3, and then mapping subclass predictions back to their original superclasses through
a simple reweighting of superclass probabilities. This work demonstrates that leveraging predefined
hierarchical label structures can substantially boost zero-shot accuracy within a fixed taxonomy. However,
it operates under the assumption that the full class hierarchy is known in advance and does not address
settings involving truly novel categories.The authors of P. Sarah (2023) use large language models to
automatically generate customized, class-specific natural language prompts, conditioned on class names,
attributes, and contextual cues, instead of relying on fixed template phrases. These tailored prompts,
when used with vision-language models such as CLIP, lead to significantly improved zero-shot classification
accuracy by capturing richer semantic nuances for each category. S3A (Zhang et al., 2024) addresses a
more realistic zero-shot setting in which neither labeled examples nor ideal vocabularies are available. It
proposes a ClusterVotePromptRealign pipeline, which extracts structural semantics from unlabeled images
by clustering them, voting on candidate labels from a broad vocabulary, refining prompts with a language
model, and realigning prototypes for pseudo-supervision. The model then self-trains the CLIP image
encoder using both individual and structural semantic alignment in a teacherstudent framework. However,
S3A assumes access to all unlabeled data upfront, whereas in the OCD setting, samples arrive in a streaming
manner and inference must be performed on-the-fly, making the two settings fundamentally different.

Textual supervision: In this paper (Gao et al., 2022), the authors introduce KeyClass, a weakly
supervised framework that automatically derives interpretable labeling functions from classlabel descrip-
tions and combines them via data programming to train text classifiers without any humanannotated
documents . Evaluated on both benchmark datasets and ICD-9 code assignment for MIMIC-III notes,
KeyClass achieves accuracy on par with fully supervised models, significantly reducing the need for costly
manual labeling .
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Active Learning: Traditionally, active learning is performed in a closed-world setting, where the labeled
and unlabeled data contains the same set of classes to maximize the performance of a model with a limited
labeling budget (Settles, 2009). The widely used pool-based methods (Z. Xueying, 2021) can be broadly
categorized into two groups: (i) diversity-based methods (S. Ozan, 2018; A. Jordan T, 2020) choose samples
that effectively represent the entire dataset; (ii) uncertainty-based methods (R. Dan, 2006) prioritize selecting
samples that exhibit high levels of predictive uncertainty. Hybrid methods (A. Sharat, 2020; H. Sheng-Jun,
2010) that combines both approaches for better performance have also been proposed. To overcome the
issues of imbalanced classification performance and inconsistent confidence between old and new classes,
inspired by active learning principles, Active Generalized Category Discovery (AGCD) (M. Shijie, 2024) is
proposed. AGCD aims to improve GCD performance by strategically selecting valuable samples for labeling
from an oracle, using an adaptive sampling strategy that considers novelty, informativeness, and diversity.
Here, we propose an active learning strategy for the very challenging and realistic OCD setting.

3 Proposed Framework

In this work, we address the challenging OCD task, where the focus is on enabling machine learning models
to adeptly identify previously unseen categories during test-time in an online manner. The central concept
revolves around training conducted on a closed labeled dataset, subsequently requiring the model’s capability
to discern novel and familiar categories instantaneously. The model is first trained on a support set DS =
{(xi, yi)}S

i=1 ∈ XS × YS , encompassing S image samples xi paired with corresponding labels yi. During
inference, the model encounters query images from DQ = {xi}Q

i=1 ∈ XQ as they arrive one at a time in an
online manner. The test set DQ comprises both known (seen during training) and novel categories, i.e. the
set of training labels is a subset of the query labels (YS ⊂ YQ). The task is to assign the query samples to
either previously encountered classes or novel, unseen categories.
It is to be noted that, zero-shot learning assumes a fixed set of target classes are known a priori. ZSL
also uses external semantics (like attributes or text prompts) to label samples from unseen classes, whereas
in case of On-the-fly Category Discovery, the model dynamically discovers new categories relying only on
semantic information from the already seen classes.
The proposed framework SynC has two modules each, in both the train and test stages: The main modules
of the training stage using examples from known classes are: 1) Generation of unique LLM-assisted class
representations and 2) Syncing image features with unique textual description and class prototypes. The
two modules of the test stage are: 1) Adaptive threshold for novel class discovery and 2) Test-time update
of the classifiers. In addition, if human involvement is allowed during inference, we present another variant
of our framework, SynC-AL, where a lightweight active learning module is incorporated to mitigate inherent
inaccuracies from propagating further. Now, we describe the different modules in detail.

3.1 SynC Training Phase

Given training samples from known classes, the goal of SynC is to learn a mapping from the image to a
semantic latent space such that the images of novel classes seen during testing will also be embedded in a
semantically meaningful manner. We achieve this using the following two modules.

3.1.1 Generation of unique LLM-assisted class representations

We aim to learn a mapping from the images to a semantically meaningful latent space, such that images
belonging to the same class (known or novel) automatically gets mapped to a unique location in the latent
space. The dataset DS contains labels yi corresponding to each sample xi ∈ XS , which are used to obtain its
category name cl. To obtain the unique text representation of each class, we utilize the powerful knowledge-
base of the pre-trained Large Language Models (LLM). First, the LLM is supplied with prompts (v1, v2, .., vd)
specific to each category name, to elicit distinctive descriptions for each category. Specifically, each prompt
vi augmented with the category name cl is given as input to the LLM, which generates a textual description
Ti, i.e. hllm : {vi + cl} 7→ Ti. For example, given the category name Black-footed Albatross, the prompts
used for obtaining descriptions of this category are ’Describe the bird, Black-footed Albatross:’,’ What are
the identifying characteristics of the bird, Black-footed Albatross?’ and ’Describe what the bird Black-footed
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Figure 2: Overall structure of our framework SynC and SynC-AL. The second module ’Syncing image
features with unique textual description and class prototypes’ is demonstrated in detail here. In the training
phase, each image is passed through a ViT backbone and MLP projection head to extract image features.
For each class cl, multiple prompts are used to generate k textual embeddings whose mean defines a unique
LLM-based class representation tl. Simultaneously, the mean of the image features for all samples in class cl

forms the prototypical class representative pl. These are jointly used to align image and text features using
the loss Ltotal. During inference, use of adaptive thresholds helps discovery of instances from novel class,
while light-weight active learning and test-time updates refine the classifier progressively.

Albatross looks like’ (P. Sarah, 2023). The details of all the prompts used are provided in Table 12 in Appendix
A. Thus, for each category, d textual descriptions (T1, T2, .., Td) are acquired for d LLM prompts (v1, v2, .., vd).
Subsequently, Sentence-BERT (N, 2019) is employed to extract text embeddings from these descriptions, from
which the mean text embedding is computed which is taken as the unique textual representation tl for the
class cl as seen in Figure 2.

3.1.2 Syncing image features with unique textual description and class prototypes

The goal is to train a model on a set of classes, such that it (i) can discern whether a test (query) image
belongs to one of the seen classes or a novel class, (ii) is able to group data from distinct novel classes
separately and (iii) does not require any knowledge of the number of novel classes that will be encountered.
We propose to leverage class-name-based text embeddings and the class-specific image prototypes of the
training data, since they are unique for each class, and automatically leads to the desired discrimination in
the semantically meaningful latent space. Thus, the goal is to learn the mapping of the images (and their
variations) to the unique, semantically meaningful textual descriptions learnt in the previous module, on the
assumption that it will subsequently generalize and map images from novel classes to their respective unique
locations in the latent space during testing. Specifically, given an image xi, the l2 normalized feature zi is
obtained by using feature extraction backbone f i.e. zi = f(xi). During training, we first utilize supervised
contrastive loss to bring all images of the same class closer for improved discriminability. Specifically, for
xi, its augmentation and all samples within the mini-batch that belongs to the same class as that of xi are
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considered as positive samples. The supervised contrastive loss (K. Prannay, 2020) can be written as:

Ls
i = − 1

|M(i)|
∑

q∈M(i)
log exp(zi · zq/α)∑

n 1[n 6=i] exp(zi · zn/α)
(1)

where M(i) denotes a set of indices of the augmentation and all the other labeled samples belonging to the
same class as that of xi in the mini-batch B. α is the temperature used for scaling. To align the images of
the same class with their unique textual description, we utilize the textual representation tl as an adjunct
view for the anchor image xi. This association enhances the model’s capacity to comprehend the intrinsic
characteristics and semantic attributes of the depicted category. The textual supervised contrastive
loss is given as:

Lt
i = − log exp(zi · tl/α)∑

n 1[n 6=i] exp(zi · tn/α)
(2)

This alignment enhances the model’s ability to establish meaningful connections between the visual and
textual modalities.

Furthermore, to enhance the clustering performance of the model, we propose to include the prototypical class
representative as another positive sample within this framework of supervised contrastive loss. Specifically,
for each class cl, where cl ∈ YS , a class-specific image prototype pl is computed by taking the mean of all
l2 normalized image features belonging to the class cl. To facilitate the learning process and ensure that
the image embeddings are more closely aligned with the corresponding class prototype, we utilize the class
prototype pl as another positive pair. and the prototypical supervised contrastive loss is given as:

Lp
i = − log exp(zi · pl/α)∑

n 1[n 6=i] exp(zi · pn/α)
(3)

This improves the overall clustering and classification performance. Thus, the unified training objective is:

Ltotal = Ls + Lt + Lp (4)

Jointly minimizing Ltotal ensures that the learned embeddings simultaneously capture visual consistency
within classes, align closely with semantic textual descriptions, and cluster effectively around class prototypes.

3.2 SynC Inference Phase

During inference, the model trained as described above encounters individual samples sequentially. The
task is to categorize them into previously encountered classes or designate them as originating from a novel,
unseen class. As novel classes are discovered, in order to improve discriminability among all the classes, the
classifiers are updated periodically using the stored statistics of all the classes encountered so far.

3.2.1 Adaptive Threshold for Novel Class Discovery

Given the integration of class prototypes as positive samples within the supervised contrastive loss framework,
we propose to employ class prototypes as the classifier during testing. Given there are L labeled classes during
training, cosine similarity between the dictionary of prototypical class representatives P = {p1, p2, ..., pL}
of previously seen classes and the l2 normalized feature zi of the current image xi is calculated as simP =
<zi, P> To account for the variability among different classes, i.e. some classes may be more clustered
compared to others which are more spread out, we utilize statistical modeling for setting adaptive thresholds
for different classes, thus making it more adaptable to the data distribution of each class. Specifically, for each
known class c where c = {1, 2, ..L}, the mean, Mc and standard deviation ϵc of the cosine similarities between
l2 normalized image features and their corresponding prototypical class representatives are computed. The
class specific threshold τc for each class c is then determined as follows:

τc = Mc − g ∗ ϵc (5)
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where g is a hyperparameter. This ensures that the threshold is higher for the well clustered classes, and
smaller for the spread out ones. The difference between the cosine similarity of the current image feature
and the prototypical class representative pc is calculated and the sample is assigned to class c if the similarity
exceeds the class-specific threshold. Otherwise, the sample is presumed to belong to a novel, unseen class.
In this case, in the absence of any other information about the newly discovered category (like class name),
we propose to store the l2 normalized feature zi corresponding to the image sample as the classifier for
this novel category. Hence, the first novel class representative is denoted as Z1 = zi. Consequently, the
dictionary comprising of the prototypical class representatives of the classes seen so far is represented as
(p1, p2, .., pL, Z1).

Since we have limited access to samples from novel classes, we assign the threshold for an incoming novel
class to be the same as the class-specific threshold of the known class that it is most similar to, based on their
latent feature representations. This approach assumes that semantically similar classes will exhibit similar
variations in their feature distributions.

3.2.2 Test-time update of the classifiers

During the testing phase, for the samples designated as belonging to novel classes, the image feature is taken
as the classifier, in the absence of their actual class names. We make two observations: (i) Depending upon
the images encountered, these features may not be very good representatives of the corresponding class; (ii)
This also leads to loss of discriminability when the old and new classes are considered together. To overcome
these challenges, we propose to update the classifiers periodically, thereby sharing knowledge between all
classes encountered so far.

Suppose, at a certain instant, m number of novel classes (m ≤ N , where N is the total number of novel
categories present in the query set DQ) have been identified so far. The dictionary of classifiers at this point
is given by (p1, p2, .., pL, Z1, Z2,. .., Zm). For updating the classifiers, one straightforward solution is to store
few training images of the classes encountered so far, but this may have storage/privacy concerns. Instead,
we utilize the means µc and covariances

∑
c for each class c, the underlying assumption is that each class can

be modeled as a Gaussian distribution N (µc,
∑

c). For the seen (training) classes, we can properly estimate
the mean and covariances from the training data. Since we do not have access to many samples from the
novel categories, we use the classifier feature Zj where jϵ{1, 2, ..., m} as the mean feature for that category
and the covariance of the most similar class (based on their latent features), assuming that semantically
similar classes will exhibit similar variations.Details of experiments supporting the claim that "semantically
similar classes will exhibit similar variations", is present in Appendix A.4.
Finally, features F̂c = ẑh

c , h = 1, . . . , H are sampled from the distribution N (µc,
∑

c) for each class c ∈
1, 2, ..., L + m, where H represents the number of generated features per class. Subsequently, the standard
cross-entropy loss is used to adjust the classifiers by feeding these features into the classifier head, which is
a single-layer perceptron with a dictionary of classifiers as its weights. This classifier adjustment results in
better separation of the classifiers with respect to each other and is performed periodically after each new
set of m novel classes is discovered.

4 SynC-AL: SynC integrated with Light-weight Active Learning

In the On-the-fly Category Discovery (OCD) task, models must continuously adapt to novel classes encoun-
tered during inference. However, this real-time adaptability poses a fundamental challenge: as the model
incrementally processes individual samples, prediction errors (eg. misclassification of a seen class instance
as novel) can quickly accumulate, leading to compounding inaccuracies over time as seen in Figure 4. Al-
though the adaptive threshold strategy in SynC mitigates some errors by dynamically adjusting decision
boundaries, certain ambiguous or borderline samples remain inherently difficult for automated classification.
Active Learning (AL) presents an attractive solution by strategically incorporating limited human supervi-
sion to resolve these challenging cases. However, traditional AL approaches, which often involve extensive
human involvement, are impractical for real-time or resource-constrained applications. Thus, an effective AL
method specifically tailored to the OCD task must be lightweight, efficient, and impose minimal cognitive
load on human annotators.
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Motivated by these practical constraints, we propose SynC-AL, a lightweight active learning extension of
SynC. Unlike traditional AL methods that require extensive labeling or domain expertise, SynC-AL lever-
ages simple binary comparisons with class-representative images to efficiently resolve uncertain predictions.
Additionally, we introduce a Confusion Buffer to minimize redundant human queries, further reducing anno-
tation costs without sacrificing accuracy. Through SynC-AL, we demonstrate that even minimal, intelligently
directed human input can significantly enhance long-term performance in dynamic, real-world category dis-
covery scenarios. Now we describe the approach in detail.

During testing, given an image sample xi with an l2-normalized feature representation zi, its similarity with
the prototypical class representatives (p1, p2, ..., pL, p(L+1) = Z1, p(L+2) = Z2, ..., p(L+m) = Zm) of previously
seen classes (assuming m novel classes have already been encountered) is computed. If the maximum cosine
similarity between zi and any known class prototype pc is less than the corresponding class-specific threshold
τc, i.e.

max
c∈{1,...,L+m}

cos(zi, pc) < τc, (6)

the sample is considered a probable instance of a novel category and is processed by the active learning
module. Thresholding the cosine similarity for novel category discovery introduces potential inaccuracies,
one common one being some instances of previously seen classes may not achieve a similarity score above
their respective threshold τc, resulting in their misclassification as a novel class. To mitigate such errors and
improve the long-term performance of the model, we introduce a light-weight active learning mechanism in
our framework, which we term as SynC-AL.

Let Bactive denote the active learning budget, representing the maximum number of queries for which the
model can request human feedback. The total human effort depends not only on the budget Bactive, but also
on the complexity of the feedback requested. In our work, when a query image xi is predicted to belong to
a novel class, the active learning module becomes functional. The straightforward human feedback that can
be requested is the class of the input sample, based on which it can be incorporated in one of the existing
categories or classified as a new class. This approach has the following limitations:
i) It requires domain expertise to classify a given image into its class, specifically for fine-grained or specialized
datasets like CUB-200-2011, Stanford Cars, Food 101, etc.
ii) It becomes especially harder when the number of classes of interest increases, eg, CUB-200-2011 dataset
has 200 classes.

Here, we propose a specialized active learning module, that requires much simpler human feedback. When a
query image xi is predicted to belong to a novel class, our proposed active learning module is engaged to refine
the prediction by leveraging the models top-k most likely class predictions. The intuition is that usually,
the correct class (if it belongs to one of the already seen classes) lies within the top predictions. In order
to facilitate this, for each encountered class c, the model maintains a representative image rc, encapsulating
the distinguishing features of that class. Let Ctop-k(xi) denote the set of the top-k predicted classes for xi,
where each class c ∈ Ctop-k(xi) has an associated representative image rc. The active learning module queries
an oracle O to compare the query image xi with each representative image rc from the predicted set. The
oracle provides a binary response for each comparison as follows:

O(xi, rc) =

{
Y es, if xi belongs to the same class as rc

No, otherwise
(7)

If the oracle confirms that xi matches with any of the top-k predicted classes, the query image is assigned
to class c. Conversely, if the oracle returns No for all k comparisons, the image is classified as belonging to
a novel class. This active learning process is computationally efficient, as it only requires k comparisons,
making it a lightweight and practical approach for real-time category discovery. This active learning module
does not require significant domain knowledge, like names of fine-grained classes, etc., as the oracle is not
tasked with identifying the exact class of the query image. Instead, it only needs to evaluate the similarity
between the query image and the representative images, reducing the cognitive load and making the system
more accessible for non-expert users.

Confusion Buffer: Given the small active learning budget Bactive, its careful utilization is crucial.
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CIFAR10 CIFAR100 ImageNet-100 CUB-200-2011 Stanford Cars Food101 Oxford Pets
|YS | 5 80 50 100 98 51 19
|YQ| 10 100 100 200 196 101 38
|DS | 12.5K 20.0K 31.9K 1.5K 2.0K 19.1K 0.9K
|DQ| 37.5K 30.0K 95.3K 4.5K 6.1K 56.6K 2.7K

Table 1: Details of the datasets used, the standard split in terms of the number of labeled and unlabeled
classes (|YS |, |YQ|) and the number of images in the labeled and unlabeled set (|DS |, |DQ|).

CIFAR 10 CIFAR 100 Imagenet-100Components All Old New All Old New All Old New
SLC (Hartigan, 1975) 41.54 58.29 33.29 44.36 58.98 15.10 32.92 86.55 5.22
MLDG (L. Da, 2018) 44.14 38.47 46.98 50.60 60.98 29.83 30.63 72.30 9.69

RankStat (H. Kai, 2021) 42.14 49.26 38.59 35.00 44.01 16.98 31.06 73.30 9.83
WTA (J. Xuhui, 2021) 43.12 34.52 47.42 40.83 52.89 16.72 30.84 72.92 9.68

SMILE (Du et al., 2023) 49.86 39.86 54.86 51.59 61.55 31.69 33.78 74.22 13.55
SynC 50.13 40.57 54.90 56.13 68.43 31.54 44.01 86.22 22.80

Table 2: Performance (accuracy %) of the proposed SynC framework on three coarse-grained datasets.

Oxford Pets Food101 CUB-200-2011 Stanford CarsMethods All Old New All Old New All Old New All Old New
SLC 35.5 41.3 33.1 20.9 48.6 6.8 28.6 44.0 20.9 14.0 23.0 9.6

RankStat 33.2 42.3 28.4 22.3 50.7 7.8 21.2 26.9 18.4 21.2 26.9 18.4
WTA 35.2 46.3 29.3 18.2 40.5 6.1 21.9 26.9 19.4 17.1 24.4 13.6

SMILE 41.2 42.1 40.7 24.0 54.6 8.4 32.2 50.9 22.9 26.1 46.6 16.2
PHE 48.3 53.8 45.4 29.1 64.7 11.1 36.4 55.8 27.0 31.3 61.9 16.8

SynC 61.65 69.46 57.55 31.09 60.72 15.98 45.33 54.27 40.85 24.60 34.80 19.55

Table 3: Performance (accuracy %) of the proposed SynC framework on four fine-grained datasets.

To optimize its use, a repository of confusing samples is maintained to prevent redundant queries. When
a sample xi fails to surpass the class-specific threshold τc, but the active learning module confirms that it
belongs to one of the previously seen classes, the sample is considered confusing and difficult for the model
to classify correctly. Formally, if

max
c∈{1,...,L}

cos(zi, pc) < τc, but O(xi, rc) = Y es & rc ∈ top k predicted classes of Cseen, (8)

where O(xi, rc) represents the oracle-provided ground-truth label and Cseen is the set of previously seen
classes, the sample is stored in a Confusion Buffer M, which has a predefined fixed capacity.

To conserve the active learning budget, any new query image xq from the test set DQ that doesn’t cross the
class- specific threshold τc is first cross-checked against the Confusion Buffer. Let zq be the l2-normalized
feature of xq. If the highest cosine similarity between zq and any stored confusing sample zm ∈ M exceeds a
similarity threshold τc, i.e. maxzm∈M cos(zq, zm) ≥ τc the query image is assigned to the corresponding class.
This process helps to classify confusing samples without invoking the active learning module. However, if
xq remains dissimilar to all stored samples, i.e., maxzm∈M cos(zq, zm) < τc, then the active learning module
is engaged, provided the query remains within the confines of the active learning budget. By incorporating
the Confusion Buffer, unnecessary active learning queries are avoided, thereby optimizing the utilization of
the limited budget Bactive. Detailed Algorithm is given in Appendix A.3.

5 Experiments

Extensive experimental evaluations are conducted on three generic and four fine-grained benchmark datasets.
The generic datasets encompass CIFAR10, CIFAR100 (Krizhevsky et al., 2009), and ImageNet-100 (T. Yon-
glong, 2020), and the fine-grained datasets include Stanford Cars (K. Jonathan, 2013), CUB (Welinder et al.,
2010), Oxford Pets (P. Omkar M, 2012) and Food 101 (B. Lukas, 2014) (Semantic Shift Benchmark).
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Methods CIFAR 10 CIFAR 100 Imagenet-100
All Old New All Old New All Old New

Margin-based baseline 51.52 20.05 67.25 56.11 72.23 23.86 44.69 90.10 21.86
Uncertainty-based baseline 51.71 20.06 67.54 57.80 74.42 24.55 45.17 87.84 23.72

SynC-AL 52.12 39.65 58.35 57.96 72.67 28.56 46.00 88.04 24.88

Table 4: Experimental results showing the baselines of OACD setting and our framework ’Sync-AL’ across
three generic datasets.

Methods Oxford Pets Food101 CUB-200-2011 Stanford Cars
All Old New All Old New All Old New All Old New

Margin-based baseline 60.56 81.12 49.75 32.50 54.95 21.05 46.28 67.47 35.67 25.92 44.52 16.72
Uncertainty-based baseline 62.13 62.67 61.84 32.37 57.15 19.73 46.57 71.40 34.13 25.29 36.72 19.62

SynC-AL 63.04 64.37 62.34 34.68 64.59 19.43 50.56 67.47 42.08 26.10 36.72 20.85

Table 5: Experimental results showing the baselines of OACD setting and our framework ’Sync-AL’ across
four fine-grained datasets.

These datasets collectively serve as standard benchmarks for assessing the performance and generalization
capabilities of our SynC framework for OCD setting and its extended version SynC-AL for OACD setting.
From each dataset D, a subset of classes is sampled to constitute the set YS denoted as the seen classes.
Subsequently, 50% of the images associated with each seen class are randomly selected to form the labeled
set DS , while the remaining images constitute the unlabeled set DQ. Furthermore, it is assumed that a
disjoint validation set is available, where a subset of labels is masked to obtain the unlabeled set. More
dataset details are given in Table 1.

Evaluation Protocol: For fair comparison with existing works (Du et al., 2023)(Z. Haiyang, 2024), we
employ Strict-Hungarian as our evaluation protocol. The Strict-Hungarian protocol (S. Vaze, 2022) calculates
the accuracy of the entire query set at once, thereby mitigating the possibility of clusters being redundantly
utilized by both new and old categories. The clustering accuracy (ACC) is calculated by making use of the
ground truth labels yi and the predicted cluster labels ŷi:

ACC = max
p∈P(YQ)

1
|DQ|

|DQ|∑
i=1

1 {ŷi = p (yi)} (9)

where P (YQ) denotes the set of all possible permutations of the class labels in DQ. The optimal assignment
is calculated using the Hungarian algorithm (W, 1955).

Implementation details: As in recent works (S. Vaze, 2022; Z. Sheng, 2023; W. Xin, 2023), we adopt
ViT-B-16 (A. Kolesnikov & Zhai, 2021) as the feature extraction backbone, that has been pre-trained with
DINO (C. Mathilde, 2021) on Imagenet. A three-layer multi-layer perceptron (MLP) serves as the projection
head, generating a 768-d feature vector as the output. Fine-tuning the ViT backbone is limited to the last
block. For all the experiments, a batch size of 128 is utilized. The reported results have been obtained
by training for 50 and 100 epochs on coarse-grained and fine-grained datasets respectively. We use SGD
with a momentum of 0.9, initial learning rate of 0.01 gradually annealed using a cosine scheduler. The
active learning budget is kept to be triple the number of labeled classes. All our experiments utilize a single
NVIDIA RTX A5000 GPU. We use 0.0001 as the constant threshold for the margin-based OACD baseline.
The constant threshold for uncertainty based OACD baseline is kept at 0.7. Confusing buffer size is kept
at twice the size of active learning budget. The classifier alignment frequency is kept at 10. The adaptive
threshold parameter (computed based on validation set) is kept at 3 for Food 101, Imagenet-100 and Stanford
Cars datasets, 4 for Oxford Pets and Cifar 10. CUB-200-2011 and Cifar100 use g = 2.5 and 3.5 respectively.
Additional implementation details are given in Appendix A.1.

Experimental Results for OCD task: Table 2, 3 report the performance of SynC on the three coarse-
grained and four fine-grained datasets using the ’Strict-Hungarian’ protocol. All denotes the overall accuracy
while Old and New denote the accuracies for known and novel classes. The results of the other approaches
are taken directly from (Du et al., 2023). SynC consistently outperforms the state-of-the-art approaches for
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Figure 3: All the above samples are incorrectly marked as novel by SynC. Out of these examples, the samples
correctly identified as belonging to previously-seen classes by SynC-AL are in green box, whereas samples
that are wrongly marked by both SynC and SynC-AL are shown in the red box.

all course-grained and three of the four fine-grained datasets, except Stanford Cars, making it an effective
framework for OCD. Bold and underline represents the highest and second highest accuracy respectively.

Experimental Results for OACD task: Since there are no existing baselines for the On-the-fly Active
Category Discovery (OACD) task, we compare the proposed SynC-AL framework with two strong baselines,
which uses full supervision in active learning module in contrast to our extremely light-weight active learning
module. Specifically, we report results on (i) Constant confidence and (Prabhu et al., 2021) (ii) Margin
threshold.(Xie et al., 2022)(Gui et al., 2024) Note that the active learning module is used to detect examples
from novel classes, and thus standard baselines like random sampling, etc. cannot be utilized.

The performance of the two baselines and the proposed SynC-AL are reported in Tables 4, 5 for the course-
grained and fine-grained datasets respectively. We observe that the proposed framework performs favorably
with respect to the two baselines. For instance, while the OACD uncertainty-based baseline attains 19.73%
accuracy on new classes in Food101, its old-class accuracy plummets to 57.15%. Our SynC-AL framework
not only maintains robust performance on new classes (19.43%) but also significantly enhances old-class
retention (64.59%), achieving a higher overall accuracy (34.68% vs. 32.50%). This pattern persists across
other datasets such as CUB-200-2011, where SynC-AL increases the overall accuracy to 50.56% while also
closing the gap between old and new classes.

Note that the two baselines uses complete supervision. Complete supervision implies that the oracle
gives the class names of the query samples predicted as belonging to novel classes. So new class nodes are
only created for the genuine new classes. In the proposed light-weight SynC-AL framework, if an example
from a seen class does not belong to the top-k predicted classes, it will be mistakenly considered as a novel
class, leading to degraded performance. Also, unlike our framework, complete supervision requires more
domain expertise. Still, the proposed light-weight SynC-AL is able to correct several misclassified samples,
that were mistakenly identified as novel by SynC, but actually belong to previously seen classes as shown
in Figure 4. This correction improves the accuracy of old classes, as these samples are reassigned to their
correct categories. Few qualitative results are shown in Figure 3.
Figure 5 exhibits the growth of the confusion buffer while encountering samples during inference. It is
important to note that the maximum size of the confusion buffer is bounded by the active learning budget,
which typically constitutes a small fraction of the total number of input samples. In SynC-AL, the buffer
can grow up to the full active learning budget. However, we find that even a reasonably small confusion
buffer can significantly enhance performance.It can be observed in figure 5 that the growth of the confusion
buffer slows down as the model processes more samples.

Table 6: Performance (accuracy %) of our framework
SynC(w/o Classifier Alignment) with varying values
of g used for adaptive class-specific threshold compu-
tation.

Imagenet-100 Stanford Carsg All Old New All Old New
3 42.96 89.45 19.60 23.36 30.50 19.82

3.5 43.76 89.85 20.59 20.69 25.37 18.38
4 43.81 87.70 21.75 20.68 28.87 16.62

Table 7: Effect of frequency of classifier update. Per-
formance (accuracy %) when classifiers are updated
after a certain number of novel classes are discovered.

Classifier
Alignment

CIFAR 100 CUB-200-2011
All Old New All Old New

10 56.13 68.43 31.54 49.44 49.07 49.63
20 55.51 66.83 32.87 45.33 54.27 40.85
30 55.64 66.95 33.02 43.12 50.33 39.51
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Figure 4: Barplot showing how estimated number of novel classes improves using SynC-AL.

Additional Analysis: Here, we conduct additional analysis of the different parameter choices.
1) Effect of Adaptive Threshold Parameter: Table 6 shows how different values of the hyperparameter
g in the adaptive threshold step (Eqn. (5)) impacts the balance between old and new class performance, with
smaller g slightly favoring old-class accuracy (e.g., 89.45% for g=3 on Imagenet-100) and larger g slightly
improving new-class accuracy (e.g., 21.75% for g=4). But the performance is quite robust with different
values of g.

Table 8: Performance (accuracy %) of our framework SynC
with different text encoder, namely SBERT and CLIP

Method CUB-200-2011 Stanford Cars
All Old New All Old New

PHE 36.4 55.8 27.0 31.3 61.9 16.8
SynC(SBERT) 45.33 54.27 40.85 24.6 34.8 19.55
SynC(CLIP) 52.31 54.73 51.10 29.7 45.21 22.02

Table 9: Effect of varying the number of
text prompts used for generation of textual
descriptions of each class.

Number of
text prompts

Oxford Pets
All Old New

2 60.01 76.25 51.75
4 61.65 69.46 57.55

2) Effect of Classifier Alignment Frequency: We observe from Table 7 that more frequent classifier
alignment updates (every 10 novel classes) generally enhances performance on both CIFAR-100 and CUB-
200-2011 datasets, particularly improving accuracy on old classes. On the other hand, decreasing the update
frequency slightly boosts accuracy on novel classes for CIFAR-100, suggesting a trade-off between preserving
old-class accuracy and enhancing novel-class recognition.

3) Effect of different text encoders : We conducted the same experiment on the CUB-200-2011 and
Stanford Cars datasets using the same set of prompts, but with CLIP replacing SBERT for generating text
embeddings as can be seen in Table 8. As expected, we observe a significant improvement in performance
due to presence of the stronger text encoder.
4) Effect of text prompts used for description generation: The prompts are manually chosen and
the performance of the framework do depend upon the number and quality of prompts. That being said,
having more numbers of prompts increases the time taken for the pre-processing step. On the matter of
quality of prompts, more particular and data-specific prompts perform better than generalized questions.
For example, for the dataset CUB(a dataset consisting of 200 species of birds), "What does the beak of the
bird look like ?" will perform better than "describe the bird." All our results for the Oxford Pets dataset are
executed with 4 prompts. We then experimented by reducing the number of prompts, and a visible decrease
in performance is noticeable in Table 9 thus supporting our previous insights.

5) Ablation Study: We analyze the contribution of each component of our framework (Table 10). Starting
from a simple supervised contrastive baseline (Ls), we progressively introduce textual contrastive loss (Lt),
prototypical contrastive loss (Lp) and classifier alignment. Finally, we incorporate lightweight active learning
(SynC-AL) with and without a confusion buffer. This analysis clearly demonstrates that each additional
component incrementally enhances overall performance, validating their importance.
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Figure 5: Graph illustrating the change in the size of the confusion buffer as the model encounters samples
during inference.

Method Ls Lt Lp ClassifierAlign. AL Conf.Buffer CIFAR-10 CUB-200-2011 Stanford Cars
All Old New All Old New All Old New

Baseline (Ls only) ✓ × × × × × 37.04 67.24 21.94 30.22 46.53 22.04 21.09 31.05 16.15
Ls + Lt only ✓ ✓ × × × × 38.52 57.04 29.26 35.65 56.53 25.18 21.87 32.43 16.64
Ls + Lp only ✓ × ✓ × × × 39.06 34.05 41.57 33.89 53.33 24.15 23.2 35.6 18.55
Ls + Lt + Lp ✓ ✓ ✓ × × × 49.85 39.80 54.88 37.12 56.67 27.32 21.92 27.64 19.09
Ls + Lt + Lp +Classifier Align. ✓ ✓ ✓ ✓ × × 50.13 40.57 54.90 45.33 54.27 40.85 24.6 34.8 19.55
SynC-AL (AL, w/o Conf. Buffer) ✓ ✓ ✓ ✓ ✓ × 51.75 39.94 57.66 49.11 63.40 41.95 - - -
SynC-AL (Full model) ✓ ✓ ✓ ✓ ✓ ✓ 52.12 39.65 58.35 50.56 67.47 42.08 26.10 36.72 20.85

Table 10: Ablation study highlighting contributions of each component in SynC and SynC-AL frameworks.

Methods CUB-200-2011 Estimated
#Novel Class

Estimated
#class

Stanford Cars Estimated
#Novel Class

Estimated
#classAll Old New All Old New

SMILE (16bit) 31.9 52.7 21.5 824 924 27.5 52.5 15.4 798 896
PHE (16bit) 37.6 57.4 27.6 218 318 31.8 65.4 15.6 611 709

SMILE (32bit) 27.3 52.0 14.97 2046 2146 21.9 46.8 9.9 2855 2953
PHE (32bit) 38.5 59.9 27.8 374 474 31.5 64.0 15.8 664 762

SMILE (64bit) 22.6 45.3 11.2 2810 2910 16.5 38.2 6.1 4690 4788
PHE (64bit) 38.1 60.1 27.2 393 493 32.1 66.9 15.3 819 917

SynC 45.33 54.27 40.85 395 495 24.60 34.60 19.55 427 525
SynC-AL 51.27 67.27 43.25 155 255 26.10 36.72 20.85 349 447

Table 11: Sync-AL provides a better estimate of the number of classes compared to SynC’. Correct number
of classes are 200 and 196 for CUB and Stanford Cars respectively.

We hypothesize that the textual embedding space is limited for some datasets, especially in the case of Stan-
ford Cars. The resolution needed for differentiating between "Chevrolet Corvette ZR1 2012" vs "Chevrolet
Corvette Convertible 2012" is lacking in the textual embedding space provided by SBERT. Thus, it results
in poor performance of our framework. We observe that the performance gain from using text embeddings
on this dataset is minimal as seen in Table 10, suggesting that a stronger text encoder like CLIP might
yield better results which we obtained in Table 8. The stronger encoder substantially improves accuracy
on both old and new classes for Stanford Cars. Although richer class descriptions might boost performance
further, we leave that exploration to future work.With CLIP, our framework SynC ranks second only to PHE
(Z. Haiyang, 2024) on Stanford Cars; on every other dataset, however, it significantly outperforms PHE and
all competing methods, even when using SBERT.

6) Comparison with SOTA: The state-of-the-art OCD approaches PHE (Z. Haiyang, 2024) and
SMILE (Du et al., 2023) rely on hash codes to represent category descriptors, introducing inherent challenges
associated with the predefined length of hash codes. This fixed-length representation limits the expressive-
ness of category features, particularly in fine-grained settings where nuanced feature variations are crucial
for distinguishing novel classes. In contrast, our proposed framework, SynC and SynC-AL, circumvents
these constraints employing a list of prototypes as classifiers, allowing for dynamic category representation
without being constrained by a fixed bit-length encoding.
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In addition, the lossy nature of hash-based representations in PHE and SMILE can potentially lead to un-
wanted category merging or fragmentation. Our prototype-based classification enables better estimation of
novel category samples. As a result, our framework produces a more accurate count of novel categories
compared to the state-of-the-art approaches. We observe from Table 11 that both PHE and SMILE signifi-
cantly overestimates the number of novel classes (e.g., PHE (16-bit) predicts 611 novel classes and SMILE
(16-bit) predicts 798 novel classes for Stanford Cars). In contrast, the proposed SynC framework provides a
significantly more accurate estimate (395 for CUB and 427 for Stanford Cars), though there is still significant
room for improvement.

Moreover, both PHE and SMILE’s performance is sensitive to hash code length. As seen in Table 11,
increasing the bit-length from 16-bit to 64-bit does not lead to a significant improvement in PHE performance,
but results in an inflated number of estimated novel categories, highlighting the limitations of hash-based
representations, especially for fine-grained category discovery.

Additionally, SynC-AL significantly outperforms SynC, benefiting from an active learning component that
refines category boundaries and reduces overestimation errors. Specifically, SynC-AL estimates only 155
novel classes on CUB while the correct number of novel classes is 100, compared to 395 in SynC, indicating
that the integration of active learning minimizes misclassification of ambiguous instances as novel categories.
Similar trends can be observed on Stanford Cars, reinforcing the effectiveness of our framework over fixed-
length hash-based methods.

Limitations: One potential limitation of our framework is the reliance on LLM for obtaining the class
representation. This might be a challenge if the class names are uncommon and may not have been present
in LLM training. Another potential limitation arises when the generated text descriptions are highly similar
to each other, as observed in the case of the Stanford Cars dataset, where it’s inherently difficult to describe
different car models distinctly. Finally, if new classes gets predicted to old classes, then it will not be
identified by our active learning framework.

6 Conclusion

In this work, we proposed a novel framework, SynC to address the challenging and realistic OCD task. We
proposed a LLM-assisted unique semantic representation for learning the image mappings in addition to a
periodic classifier update module for this task. Additionally, we also propose an extended version, SynC-
AL which incorporates lightweight active learning, allowing minimal human intervention to correct errors
and improve performance. Our proposed SynC and SynC-AL achieved state-of-the-art performance across
several benchmark datasets, significantly outperforming existing methodologies.
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Datasets
Text prompts used for
description generation
Number Prompts

CIFAR10 3
Describe what an {} looks like
Describe a(n) {}:
What are the identifying characteristics of a(n) {}?

CIFAR100 4

Describe a photo of a(n) {}:
Describe what a(n) {} looks like:
Describe a(n) {}:
What are the identifying characteristics of a(n) {}?

ImageNet-100 5

Describe what a(n) {} looks like
A caption of an image of a(n) {}:
How can you identify a(n) {}?
What does a(n) look like?
Describe an image from the internet of a(n) {}

CUB-200-2011 3
Describe the bird {} :
Describe what the bird {} looks like.
What are the identifying characteristics of the bird,a(n) {}?

Stanford Cars 9

How can you identify a(n) {}?
Description of a(n) {}, a type of car
A caption of a photo of a(n) {}:
What are the primary characteristics of a(n) {}?
Description of the exterior of a(n) {}
What are the identifying characteristics of a(n) {}, a type of car?
Describe an image from the internet of a(n) {}
What does a(n) {} look like?
Describe what a(n) {}, a type of car looks like

Food 101 4

Describe what a(n) {} looks like
Describe the color and shape of a(n) {} :
What does a(n) {} taste like?
what is the cuisine of a(n) {} ?

Oxford Pets 4

Describe what a(n) {} looks like
Describe the key physical characteristics a(n) {}
for example:(size, coat type , colors, and distinctive features)
What is the typical temperament and interaction style a(n) {} ?
What is the origin or history of a(n) {} ?

Table 12: Table denoting the prompts used for text generation using LLM

A Appendix

A.1 Implementation Details

We used Llama-2-13b-chat-hf for the generation of our text descriptions from prompts appended with class-
names. Following this, we used Sentence-BERT to generate our text embeddings using the prompts men-
tioned in table 12.

A.2 Baselines pertaining to On-the-fly Active Category Discovery

On-the-fly Active Category Discovery (OACD) requires that each sample be inferred instantaneously,
and the decision to request for human intervention must be made in real-time. Since inference occurs

18



Under review as submission to TMLR

one sample at a time, traditional active learning strategies such as random sampling, Query-by-Committee
(QBC)(S. H. Sebastian, 1992) cannot be directly applied.

Baseline Sampling Strategies

A.2.1 Constant Confidence Threshold

We employ a constant confidence threshold as the sampling strategy. Given an image sample xi with
an l2-normalized feature representation zi, we compute its cosine similarity with the prototypical class
representatives (p1, p2, ..., pL) of previously seen categories. The similarity score for class c is defined as:

sc = cos(zi, pc) = zi · pc

‖zi‖‖pc‖
, c ∈ {1, ..., L}. (10)

The highest similarity score across all previously seen categories is given by:

smax = max
c∈{1,...,L}

sc. (11)

If smax falls below a predefined confidence threshold τ , the sample is considered a probable novel instance:

smax < τ. (12)

In such cases, we activate the active learning module to determine whether the sample belongs to an entirely
new category or aligns with an existing one.

A.2.2 Constant Margin Threshold

In addition to the constant confidence threshold, we implement a constant margin threshold as an alternative
sampling strategy. Instead of relying on an absolute similarity threshold, we evaluate the relative difference
between the highest and second-highest cosine similarities of the l2-normalized feature representation zi with
the prototypical class representatives.

Let the top two similarity scores be defined as:

smax = max
c∈{1,...,L}

sc, s2nd = max
c∈{1,...,L}\arg max sc

sc. (13)

The margin between these two scores is computed as:

∆s = smax − s2nd. (14)

If this margin falls below a predefined threshold τm, the sample is considered ambiguous and likely to belong
to a novel category:

∆s < τm. (15)

In such cases, we trigger the active learning module to determine whether the sample requires further
supervision.

A.3 Algorithm

A.4 Semantically similar classes exhibit similar variations in their feature distributions

To evaluate whether semantically similar classes exhibit similar variations in their feature distributions, we
perform the following experiment:
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Algorithm 1 Light-Weight Active Learning module of SynC-AL
Input:Test set XQ ; prototypical class representative classifiers P = {p1, p2, ..., pL}
Output: prediction
while xi ∈ XQ do

Compute normalized feature zi from xi

for each class c ∈ |P | do
Compute cosine similarity simc between zi and pc

if simc ≥ τc then
Assign xi to class c
prediction = class c

end if
end for
if simc < τc∀c then

Check against Confusing Buffer M
if Similarity with confusing sample is high then

Classify xi accordingly
prediction = index of the class

else
Use Active learning budget if available
if xi ∈ known classes then

Update Confusing Buffer M
prediction = index of the class

else
xi ∈ novel class. Update P accordingly
prediction = last index of P

end if
end if

end if
end while

First, for every pair of classes, we compute their text-embedding similarity, defined as the cosine similarity
between their normalized text embeddings. This quantifies how semantically similar the two classes are.
Second, we compute a covariance-based similarity by measuring the Frobenius norm of the difference between
their feature covariance matrices and converting this distance into a similarity score (e.g., using an exponential
transformation).
Finally, we compute an agreement score. For each class, we check whether its nearest neighbor (based
on text-embedding similarity) is among its top-3 most similar classes based on covariance similarity. The
percentage of classes for which this condition holds is then reported for different datasets. For CIFAR-10,
Oxford Pets, and Food-101, the agreement scores are found to be 90.0%, 78.4%, and 82.2%, respectively,
supporting the underlying assumption.
For example, in the OxfordPets dataset, "American pit bull terrier" is a dog breed whose text embeddings are
close to that of "Staffordshire bull terrier", and its top-3 most similar classes based on covariance similarity
are "Staffordshire bull terrier", "boxer", and "pug".
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